MATH 53, Practice for Midterm 2

You should allocate 90 minutes to do the following 9 problems (starting on the back of this page). The difficulty and spread of topics are not indicative of the actual midterm.

Make sure to show your reasoning, as an answer with no explanation will receive no credit on the actual exam. It is also a good habit to box your final answers.

Problem 1. Explain why $f(x, y)=2 x^{2}+y^{2}$ must have absolute extrema constrained to the circle $x^{2}+y^{2}=1$, and find them with Lagrange multipliers.

Problem 2. Evaluate the integral

$$
\int_{0}^{\sqrt{2}} \int_{y^{2}}^{2} \frac{y}{1+x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

Problem 3. Find the volume of the region above the cone $z=\sqrt{x^{2}+y^{2}}-2$ and the below the paraboloid $z=$ $4-x^{2}-y^{2}$.

Problem 4. Convert the following triple integral to Cartesian coordinates, but do not evaluate it.

$$
\int_{0}^{\pi / 2} \int_{0}^{1} \int_{r^{2}}^{r} r^{2} \cos \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

Problem 5 (Stewart Ch. 15 Review \#55). Evaluate

$$
\iint_{R} \frac{x-y}{x+y} \mathrm{~d} x \mathrm{~d} y
$$

where R is the square with vertices $(0,2),(1,1),(2,2),(1,3)$.

Problem 6 (Stewart $\$ 16.2 .2$). Let C be the part of the curve $x^{4}=y^{3}$ between the points $(1,1)$ and $(8,16)$. Compute $\int_{C}(x / y) \mathrm{d} s$.

Problem 7.

a) Find a function $f(x, y, z)$ such that

$$
\nabla f=\left\langle 3 x^{2} y z-3 y, x^{3} z-3 x, x^{3} y+2 z\right\rangle .
$$

b) Let C be the line segment starting at $(0,0,2)$ and ending at $(0,3,0)$. Evaluate

$$
\int_{C}\left\langle 3 x^{2} y z-3 y+\arctan (y z), x^{3} z-3 x+2 \cos \left(x^{2}\right), x^{3} y+2 z\right\rangle \cdot \mathrm{d} \mathbf{r}
$$

Problem 8. Let C be the ellipse $x^{2} / 4+y^{2}=1$, oriented counterclockwise. Briefly explain why Green's theorem cannot be directly applied to the integral

$$
\int_{C}\left(y \log _{4}\left(x^{2}+4 y^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathrm{d} x+\left(-7 x+2 y \sin \left(x^{3}\right)\right) \mathrm{d} y .
$$

Find a way around this issue and evaluate the integral.

Problem 9. Suppose we have an object of mass M occupying some region D, and let $C M=(\bar{x}, \bar{y})$ be its center of mass. If $P=(a, b)$ is any point in the plane, we can define the moment of inertia about P as

$$
I_{P}=\int_{D}(\text { distance from } P \text { to }(x, y))^{2} \mathrm{~d} m
$$

a) Calculate $I_{P}-I_{C M}$, leaving your final answer in terms of the constants $a, b, \bar{x}, \bar{y}, M$ only (there should be no integrals in your final answer).
b) Suppose that that our object is a circular cable of radius 2 centered at the origin with constant density and total mass $M=\pi$. Let $P=(1,0)$. Find I_{P}. (Even if you did not solve (a), you can do this directly.)

